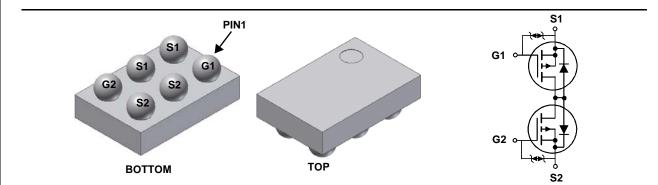


FDZ1905PZ

Common Drain P-Channel 1.5V PowerTrench[®] WL-CSP MOSFET –20V, –3A, 123m Ω

Features

- Max $r_{S1S2(on)}$ = 126m Ω at V_{GS} = -4.5V, I_{S1S2} = -1A
- Max $r_{S1S2(on)}$ = 141m Ω at V_{GS} = -2.5V, I_{S1S2} = -1A
- Max $r_{S1S2(on)}$ = 198m Ω at V_{GS} = -1.8V, I_{S1S2} = -1A
- Max $r_{S1S2(on)} = 303m\Omega$ at $V_{GS} = -1.5V$, $I_{S1S2} = -1A$
- Occupies only 1.5 mm² of PCB area, less than 50% of the area of 2 x 2 BGA
- Ultra-thin package: less than 0.65 mm height when mounted to PCB
- High power and current handling capability
- HBM ESD protection level > 4kV (Note 3)
- RoHS Compliant


July 2008

General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features two common drain P-channel MOSFETs, which enables bidirectional current flow, on Fairchild's advanced 1.5V PowerTrench[®] process with state of the art "low pitch" WL-CSP packaging process, the FDZ1905PZ minimizes both PCB space and $r_{S1S2(on)}$. This advanced WL-CSP MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, ultra-low profile packaging, low gate charge, and low $r_{S1S2(on)}$.

Applications

- Battery management
- Load switch
- Battery protection

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Para	meter		Ratings	Units
V _{S1S2}	Source1 to Source2 Voltage			-20	V
V _{GS}	Gate to Source Voltage			±8	V
I _{S1S2}	Source1 to Source2 Current -Continu	uous T _A = 25°C	(Note 1a)	-3	٨
	-Pulsed			-15	— A
D	Power Dissipation (Steady State)	T _A = 25°C	(Note 1a)	1.5	w
P _D	Power Dissipation	T _A = 25°C	(Note 1b)	0.9	VV
T _J , T _{STG}	Operating and Storage Junction Tempo	erature Range		-55 to +150	°C

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	83	°C ///
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	140	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
5	FDZ1905PZ	WL-CSP 1.0X1.5	7"	8mm	5000 units

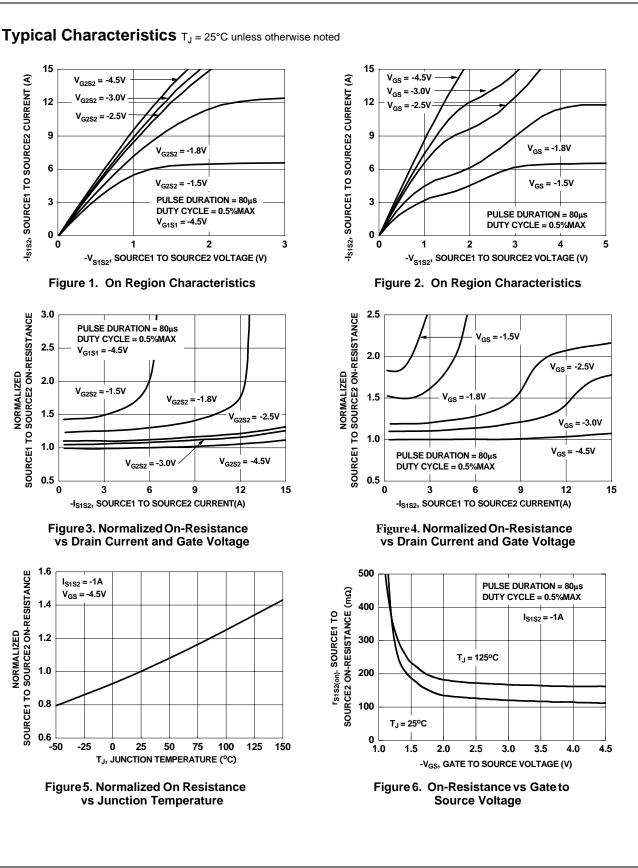
teristics					
101131163					
Zero Gate Voltage Source1 to Source2 Current	$V_{S1S2} = -16V, V_{GS} = 0V$			-1	μA
Gate Body Leakage Current	$V_{GS} = \pm 8V, V_{S1S2} = 0V$			±10	uA
teristics (Note 2)		0.4	0.7		
Gate to Source Threshold Voltage	00 0102 0102 1	-0.4	•	-	V
Static Source1 to Source2 On Resistance					_ _ mΩ
	$V_{GS} = -2.5V, I_{S1S2} = -1A$		112	141	
	$V_{GS} = -1.8V, I_{S1S2} = -1A$		132	198	
	$V_{GS} = -1.5V, I_{S1S2} = -1A$		164	303	
	$V_{GS} = -4.5V, I_{S1S2} = -1A, T_J = 125^{\circ}C$		135	195	
Forward Transconductance	$V_{S1S2} = -5V, I_{S1S2} = -1A$		8		S
	Current Gate Body Leakage Current Ceristics (Note 2) Gate to Source Threshold Voltage Static Source1 to Source2 On Resistance	Current $V_{S1S2} = -16V, V_{GS} = 0V$ Gate Body Leakage Current $V_{GS} = \pm 8V, V_{S1S2} = 0V$ ceristics (Note 2) V Gate to Source Threshold Voltage $V_{GS} = V_{S1S2}, I_{S1S2} = -250\mu A$ VGS = -4.5V, I_{S1S2} = -1A VGS = -4.5V, I_{S1S2} = -1A VGS = -1.8V, I_{S1S2} = -1A VGS = -1.8V, I_{S1S2} = -1A VGS = -1.8V, I_{S1S2} = -1A VGS = -1.5V, I_{S1S2} = -1A VGS = -4.5V, I_{S1S2} = -1A VGS = -4.5V, I_{S1S2} = -1A VGS = -4.5V, I_{S1S2} = -1A, I_{	Current $V_{S1S2} = -16V$, $V_{GS} = 0V$ Gate Body Leakage Current $V_{GS} = \pm 8V$, $V_{S1S2} = 0V$ ceristics (Note 2) $V_{GS} = V_{S1S2}$, $I_{S1S2} = -250\mu A$ -0.4 Gate to Source Threshold Voltage $V_{GS} = -4.5V$, $I_{S1S2} = -1A$ -0.4 VGS = -2.5V, $I_{S1S2} = -1A$ $V_{GS} = -1.8V$, $I_{S1S2} = -1A$ $V_{GS} = -1.8V$, $I_{S1S2} = -1A$ Static Source1 to Source2 On Resistance $V_{GS} = -1.8V$, $I_{S1S2} = -1A$ $V_{GS} = -1.5V$, $I_{S1S2} = -1A$ VGS = -1.5V, $I_{S1S2} = -1A$ $V_{GS} = -4.5V$, $I_{S1S2} = -1A$ $V_{GS} = -4.5V$, $I_{S1S2} = -1A$	VS1S2 $= -16V$, $V_{GS} = 0V$ Gate Body Leakage Current $V_{GS} = \pm 8V$, $V_{S1S2} = 0V$ reristics (Note 2) $V_{GS} = V_{S1S2}$, $I_{S1S2} = -250\mu A$ -0.4 -0.7 Gate to Source Threshold Voltage $V_{GS} = -4.5V$, $I_{S1S2} = -1A$ 99 $V_{GS} = -2.5V$, $I_{S1S2} = -1A$ 99 VGS = -1.8V, $I_{S1S2} = -1A$ 112 $V_{GS} = -1.8V$, $I_{S1S2} = -1A$ 112 VGS = -1.5V, $I_{S1S2} = -1A$ 132 $V_{GS} = -1.5V$, $I_{S1S2} = -1A$ 132 VGS = -4.5V, $I_{S1S2} = -1A$ 132 $V_{GS} = -4.5V$, $I_{S1S2} = -1A$ 133 VGS = -4.5V, $I_{S1S2} = -1A$ 134 135 135	Current $V_{S1S2} = -16V$, $V_{GS} = 0V$ -1 Gate Body Leakage Current $V_{GS} = \pm 8V$, $V_{S1S2} = 0V$ ± 10 reristics (Note 2) Gate to Source Threshold Voltage $V_{GS} = V_{S1S2}$, $I_{S1S2} = -250\mu A$ -0.4 -0.7 -1.0 V_{GS} = V_{S1S2}, $I_{S1S2} = -250\mu A$ -0.4 -0.7 -1.0 V_{GS} = -4.5V, $I_{S1S2} = -1A$ 99 126 V_{GS} = -2.5V, $I_{S1S2} = -1A$ 112 141 V_{GS} = -1.8V, $I_{S1S2} = -1A$ 112 141 V_{GS} = -1.8V, $I_{S1S2} = -1A$ 112 141 V_{GS} = -1.8V, $I_{S1S2} = -1A$ 112 141 V_{GS} = -1.5V, $I_{S1S2} = -1A$ 132 198 V_{GS} = -4.5V, $I_{S1S2} = -1A$ 164 303 V_{GS} = -4.5V, $I_{S1S2} = -1A$, $T_J = 125^{\circ}C$

Switching Cha

t _{d(on)}	Turn-On Delay Time		12	22	ns
t _r	Rise Time	$V_{S1S2} = -10V, I_{S1S2} = -1A$	36	58	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -4.5V, R_{GEN} = 6\Omega$	143	229	ns
t _f	Fall Time		182	291	ns

Notes: 1. $R_{\theta JA}$ is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 83°C/W when mounted on a 1 in² pad of 2 oz copper

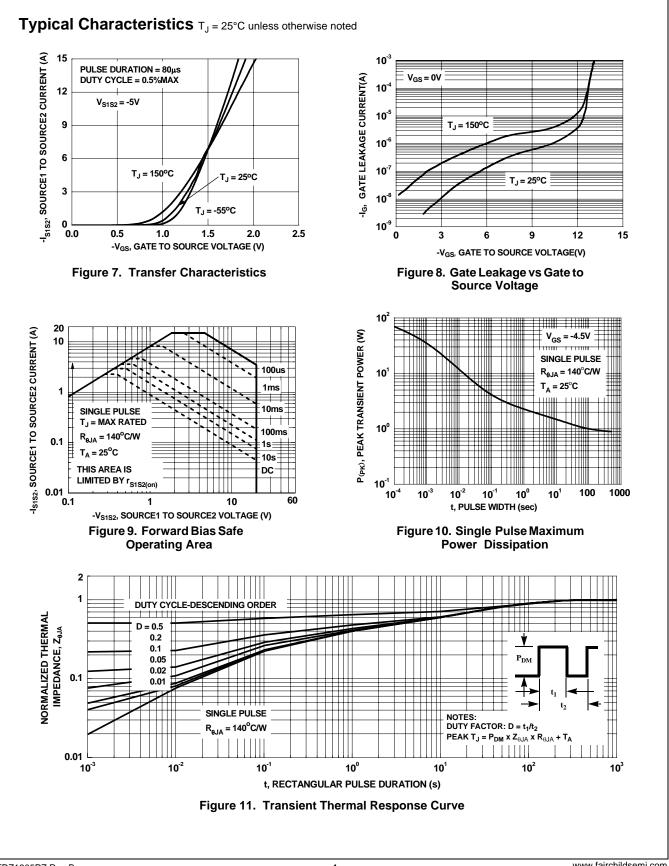


b.140°C/W when mounted on a minimum pad of 2 oz copper

FDZ1905PZ Common Drain P-Channel 1.5V PowerTrench[®] WL-CSP MOSFET

2. Pulse Test: Pulse Width < 300ms, Duty cycle < 2.0%.

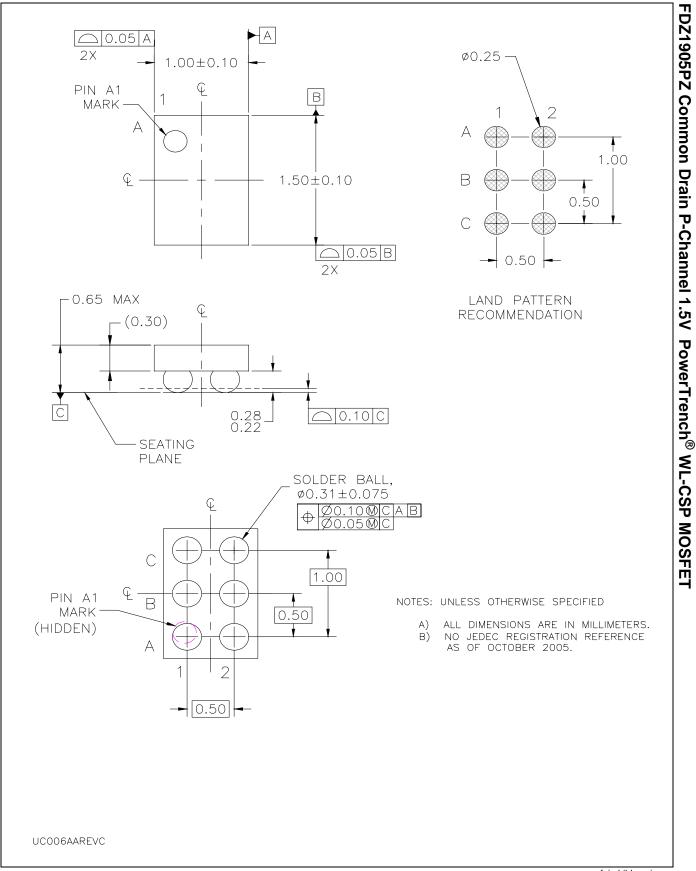
3. The diode connected between the gate and source serves only protection against ESD. No gate overvoltage rating is implied.



FDZ1905PZ Common Drain P-Channel 1.5V PowerTrench[®] WL-CSP MOSFET

FDZ1905PZ Rev.B

3


www.fairchildsemi.com

FDZ1905PZ Rev.B

www.fairchildsemi.com

FDZ1905PZ Common Drain P-Channel 1.5V PowerTrench[®] WL-CSP MOSFET

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] *CROSSVOLT*[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®] * **FRFFT**® Global Power ResourceSM Green FPS™ Green FPS[™] e-Series[™] GTO™ i-Lo™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM[™] **OPTOLOGIC[®] OPTOPLANAR[®]**

FPS™

PDP-SPM™ Power220[®] **POWEREDGE[®]** Power-SPM™ PowerTrench® Programmable Active Droop[™] **QFET**® QS™ QT Optoelectronics[™] Quiet Series[™] RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT[™]-6 SuperSOT™-8

SupreMOS™ SyncFET™

EGENERAL The Power Franchise[®]

the wer franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPOwer™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.

FDZ1905PZ Common Drain P-Channel 1.5V PowerTrench[®] WL-CSP MOSFET